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CHAPTER 20 -- A.  C.     CIRCUITS

20.1)  12 volts peak to peak implies that the amplitude of the voltage is 6
volts (Vo = Vpp/2).

a.)  The voltage as a function of time has the general form:

               V(t) = Vo sin (2πνt).

For this problem, Vo = 6 volts and ν = 2500 hertz.  Substituting in, we get:

    V(t) = 6 sin (15,708 t).

b.)  For the RMS voltage:

     VRMS = .707Vo
       = .707(6 volts)

     = 4.24 volts.

c.)  AC ammeters read RMS values.  That means iRMS = 1.2 amps.
The maximum current is the amplitude (io), therefore:

iRMS = .707io
     ⇒     io = iRMS/.707

      = (1.2 A)/.707
      = 1.7 amps.

Note:  You have to be careful when dealing with AC circuits.  A device
that can only withstand 1.5 amps maximum is not going to be safe if put in an
AC circuit whose RMS current is 1.2 amps.  Why?  Because there will be peri-
ods in the current's cycle during which the current's value will exceed 1.5
amps (it'll go all the way up to 1.7 amps according to our calculations above).
Obviously the problem will not arise if the device is rated at 1.5 amps RMS,
which is the way most devices are rated (that is, in terms of their RMS cur-
rents).  Nevertheless, you need to be sure you know what numbers you are
dealing with when working with AC circuits in the everyday world.
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20.2)  The trick to unscrambling questions like these is to remember:  1.)
the inductive reactance XL measures the amount of resistance to current flow
there is in an AC circuit due to the presence of the inductor--when XL is
LARGE, current will be SMALL, and vice versa (the same can be said of the
capacitive reactance XC); and  2.) the amount of current in any circuit is
mirrored by the size of the voltage drop across the circuit's resistor--when the
resistor's voltage is HIGH, the current must be HIGH, and vice versa.  With
all of this in mind:

a.)  False:  The time-average voltage (Vavg) across a resistor in an
AC circuit is zero.  The RMS voltage across a resistor in an AC circuit is
equivalent to the constant DC voltage that will provide the same amount
of power to the resistor as does the alternating voltage.  In no case will
these two be the same.

b.)  True:  The AC version of Ohm's Law states that VRMS = iRMSR.

c.)  False:  The capacitive reactance (XC) measures the capacitor's
resistance to charge flow in the circuit.  If that value is large, there will
be a small current in the circuit.  A small current implies a small
voltage across the resistor.

d.)  True:  Again, capacitive reactance measures the resistive nature
of the capacitor in an AC circuit.  When it is large, the current in the
circuit will be small; when it is small (as is the case here), the current
in the circuit will be large.

e.)  True:  The capacitive reactance is equal to 1/(2πνC).  Decreasing
the frequency increases the resistive nature of the circuit.  This de-
creases the current.  A decrease in current decreases the voltage across
the resistor.  As the sum of the voltage differences of the circuit elements
must equal the power supply voltage at a given instant, decreasing the
voltage across the resistor must elicit an equal increase in voltage across
the capacitor.

f.)  True:  The capacitive reactance (Xc) numerically equals 1/(2πνC).
Increasing the capacitance for a given frequency decreases Xc.  If the
resistive nature of the capacitor (Xc) decreases, the current will go up.

g.)  False:  Decreasing the frequency increases the resistive nature of
the capacitor (XC = 1/(2πνC) goes up when ν goes down).  This drops the
current, which drops the voltage across the resistor.
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R = 95 ohms

C

V(t) = 80  sin (2π(300)t)

20.3)

a.)  True:  This is still true (see Problem 20.2b above).

b.)  False:  The inductive reactance (XL) measures the resistive
nature of the inductor.  If that value is large, there will be a small
current in the circuit.  A small current implies a small voltage across
the resistor.

c.)  True:  Again, if a measure of the resistive nature of the inductor
(i.e., XL) is small, the current in the circuit will be large.

d.)  False:  The inductive reactance is equal to 2πνL.  Decreasing the
frequency decreases the resistive nature of the circuit, increasing the
current.  An increase in current increases the voltage across the
resistor, which means the voltage across the inductor must decrease
(this is similar to the reasoning presented in Problem 20.2e).

e.)  False:  Increasing the inductance increases XL.  This will
decrease the current in the circuit.

f.)  True:  Decreasing the frequency will decrease XL.  This will
increase the current in the circuit which, in turn, will increase the
voltage across the resistor.

20.4)  Capacitors allow high frequency signals to pass; inductors stop high
frequency.  The resistor that dissipates the most power is the one with the most
current in it.  That will be the resistor in series with the capacitor, or the 12 Ω
resistor.

20.5)  The circuit is shown to the right.

a.)  The capacitive reactance Xc is a part
of the impedance (note that XL = 0).  Knowing
the expression for impedance, we write:

Z = [Rnet
2 + (XL - Xc)

2]1/2

   = [Rnet
2 + (-Xc)

2]1/2

 ⇒     Xc = [Z2 - Rnet
2]1/2

       = [(220 Ω)2 - (95 Ω)2]1/2

    = 198.4 Ω.
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b.)  We need to determine the capacitance C.  We know the capacitive
reactance is Xc = 1/(2πνC), and we know that when the frequency is 300
hertz, Xc equals 198.4 Ω (from above).  Manipulating the Xc expression,
then plugging in, we get:

C = 1/(2πνXc)
    = 1/[2π(300 hz)(198.4 Ω)]
    = 2.67x10-6 farads.                  (This is 2.67 µf).

Knowing C, we can determine Z at 1000 hz:

Z = [Rnet
2 + (XL - Xc)

2]1/2

    = [Rnet
2 + [(0) - (1/(2πνC))2]1/2

    = [(95 Ω)2 + [(0) - 1/(2π(1000 hz)(2.67x10-6 f))]2]1/2

    = 112.2 Ω.

c.)  We know Vmax = 80 volts.

     VRMS = .707Vmax
      = .707(80 v)
      = 56.56 volts.

From Ohm's Law:

     VRMS = iRMS(Z)

          ⇒     iRMS = VRMS/(Z)
      = (56.56 v)/(112.2 Ω)
      = .504 amps.

20.6)  An RL circuit:

a.)  The inductive reactance XL is a part of the impedance (note that
XC = 0).  We also know that the net resistance is Rnet = R + rL, where rL
is the resistor-type resistance involved in the wire making up the
inductor's coils.  This value will be Rnet= 12 Ω + 8 Ω = 20 Ω.  Knowing the
impedance Z, we can write:
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Z = [Rnet
2 + (XL - Xc)

2]1/2

   = [Rnet
2 + XL

2]1/2

   ⇒     XL = [Z2 - Rnet
2]1/2

= [(60 Ω)2 - (20 Ω)2]1/2

= 56.57 Ω.

b.)  We need to determine the inductance L.  We know the inductive
reactance is XL = 2πνL, and we know that when the frequency is 240
hertz, XL equals 56.57 Ω (from above).  Manipulating the Xc expression,
then plugging in, we get:

L = XL/2πν
    = (56.57 Ω)/[2π(240 hz)]
    = 3.75x10-2 henrys                 (this is 37 mH).

Knowing L, we can determine Z at 1000 hz using:

Z = [Rnet
2 + (XL - Xc)

2]1/2

    = [Rnet
2 + [(2πνL) - (0)]2]1/2

    = [(20 Ω)2 + [2π(1000 hz)(3.7x10-2 H)]2]1/2

    = 233.3 Ω.

c.)  We know VRMS = 70 volts.  Using Ohm's Law:

VRMS = iRMS(Z)

     ⇒     iRMS = VRMS/(Z)
 = (70 v)/(233.3 Ω)
 = .3 amps.

20.7)  V(t) = 140 sin (1100 t), R = 12 Ω, L = 60x10-3 henrys, and C = 12x10-6

farads.

a.)  The angular frequency is ω  = 2πν, which means the frequency ν
is embedded in the sine function's argument.  We know that ω  = 1100
radians per second, so we can write:

2πν = 1100
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    ⇒     ν = 175 hz.

b.)  Capacitive reactance:

Xc = 1/(2πνC)

      = 1/[2π(175 hz)(12x10-6 f)]
      = 75.79 Ω.

Note:  Technically, it is usually best to use variables that are given in a
problem, versus variables that have been derived in a previous section. I have
used the frequency-explicit expression for capacitive reactance (even though
the frequency had to be calculated in Part a) because that is the expression you
will most often use when trying to determine such quantities.  My apologies for
the apparent inconsistency.

c.)  Inductive reactance:

XL = 2πνL

       = 2π(175 hz)(60x10-3 H)
       = 65.97 Ω.

d.)  Impedance:

Z = [Rnet
2 + (XL - Xc)

2]1/2

    = [(12 Ω)2 + [(65.97 Ω) - (75.79 Ω)]2]1/2

    = 15.5 Ω.

e.)  Phase shift:

φ = tan-1 [(XL - Xc)/Rnet]

   = tan-1 [(65.97 - 75.79)/(12)]
   = -39.29o.

The negative sign means the voltage lags the current.

f.)  RMS voltage of the power supply:

VRMS = .707Vo
 = .707(140 volts)
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= 98.98 volts.

g.)  RMS current in the circuit:  Using Ohm's Law:

 iRMS = VRMS/Z
= (98.98 v)/(15.5 Ω)
= 6.39 amps.

h.)  Resonance frequency:

νres = [1/(2π)] [1/LC]1/2

       = [1/(2π)] [1/[(60x10-3)(12x10-6)]]1/2

       = 187.57 Hz.

i.)  At resonance, the frequency is 187.57 hertz.  The time-dependent
voltage at that frequency is:

V(t) = 140 sin (2πνres t)
         = 140 sin [2π(187.57) t]
         = 140 sin (1178.5 t).

j.)  Impedance at resonance:  At resonance, XL - Xc = 0, so:

Z = [Rnet
2 + (0)2]1/2

   = Rnet
   = 12 Ω.

Note:  This is the SMALLEST impedance the circuit will ever experience.

k.)  RMS current at resonance:

iRMS = VRMS/Z
= (98.98 v)/(12 Ω)
= 8.25 amps.

Note that the LARGEST current the circuit will ever experience will be io
= iRMS/.707 = 11.7 amps.

20.8)
a.)  Impedance matching requires the use of a transformer the

turns-ratio of which must be:
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Np/Ns = (Zst/Zload)1/2.

Using the information given in the problem:

        Np  / Ns   = [    Zst    /  Zload]1/2

      (200)/(Ns) = [(237Ω)/(12 Ω)]1/2

  ⇒     Ns = (200)/(4.444)
                 = 45.

A 200 winds primary with a 45 winds secondary will make the
signal from the 237 Ω impedance stereo think it is entering a 237 Ω
impedance speaker.

b.)  As the number of winds in the secondary are less than in the
primary, we are looking at a step-down transformer.


